Initial commit to git.yoin

This commit is contained in:
hmo
2026-02-11 22:02:47 +08:00
commit cf10ab6473
153 changed files with 14581 additions and 0 deletions

View File

@@ -0,0 +1,198 @@
<div align="center">
[![Join AI Community](https://img.shields.io/badge/🚀_Join-AI_Community_(FREE)-4F46E5?style=for-the-badge)](https://www.skool.com/ai-for-your-business)
[![GitHub Profile](https://img.shields.io/badge/GitHub-@coffeefuelbump-181717?style=for-the-badge&logo=github)](https://github.com/coffeefuelbump)
[![Link Tree](https://img.shields.io/badge/Linktree-Everything-green?style=for-the-badge&logo=linktree&logoColor=white)](https://linktr.ee/corbin_brown)
[![YouTube Membership](https://img.shields.io/badge/YouTube-Become%20a%20Builder-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/channel/UCJFMlSxcvlZg5yZUYJT0Pug/join)
</div>
---
# 📊 CSV Data Summarizer - Claude Skill
A powerful Claude Skill that automatically analyzes CSV files and generates comprehensive insights with visualizations. Upload any CSV and get instant, intelligent analysis without being asked what you want!
<div align="center">
[![Version](https://img.shields.io/badge/version-2.1.0-blue.svg)](https://github.com/coffeefuelbump/csv-data-summarizer-claude-skill)
[![Python](https://img.shields.io/badge/python-3.8+-green.svg)](https://www.python.org/)
[![License](https://img.shields.io/badge/license-MIT-orange.svg)](LICENSE)
</div>
## 🚀 Features
- **🤖 Intelligent & Adaptive** - Automatically detects data type (sales, customer, financial, survey, etc.) and applies relevant analysis
- **📈 Comprehensive Analysis** - Generates statistics, correlations, distributions, and trends
- **🎨 Auto Visualizations** - Creates multiple charts based on what's in your data:
- Time-series plots for date-based data
- Correlation heatmaps for numeric relationships
- Distribution histograms
- Categorical breakdowns
- **⚡ Proactive** - No questions asked! Just upload CSV and get complete analysis immediately
- **🔍 Data Quality Checks** - Automatically detects and reports missing values
- **📊 Multi-Industry Support** - Adapts to e-commerce, healthcare, finance, operations, surveys, and more
## 📥 Quick Download
<div align="center">
### Get Started in 2 Steps
**1⃣ Download the Skill**
[![Download Skill](https://img.shields.io/badge/Download-CSV%20Data%20Summarizer%20Skill-blue?style=for-the-badge&logo=download)](https://github.com/coffeefuelbump/csv-data-summarizer-claude-skill/raw/main/csv-data-summarizer.zip)
**2⃣ Try the Demo Data**
[![Download Demo CSV](https://img.shields.io/badge/Download-Sample%20P%26L%20Financial%20Data-green?style=for-the-badge&logo=data)](https://github.com/coffeefuelbump/csv-data-summarizer-claude-skill/raw/main/examples/showcase_financial_pl_data.csv)
</div>
---
## 📦 What's Included
```
csv-data-summarizer-claude-skill/
├── SKILL.md # Claude Skill definition
├── analyze.py # Comprehensive analysis engine
├── requirements.txt # Python dependencies
├── examples/
│ └── showcase_financial_pl_data.csv # Demo P&L financial dataset (15 months, 25 metrics)
└── resources/
├── sample.csv # Example dataset
└── README.md # Usage documentation
```
## 🎯 How It Works
1. **Upload** any CSV file to Claude.ai
2. **Skill activates** automatically when CSV is detected
3. **Analysis runs** immediately - inspects data structure and adapts
4. **Results delivered** - Complete analysis with multiple visualizations
No prompting needed. No options to choose. Just instant, comprehensive insights!
## 📥 Installation
### For Claude.ai Users
1. Download the latest release: [`csv-data-summarizer.zip`](https://github.com/coffeefuelbump/csv-data-summarizer-claude-skill/releases)
2. Go to [Claude.ai](https://claude.ai) → Settings → Capabilities → Skills
3. Upload the zip file
4. Enable the skill
5. Done! Upload any CSV and watch it work ✨
### For Developers
```bash
git clone git@github.com:coffeefuelbump/csv-data-summarizer-claude-skill.git
cd csv-data-summarizer-claude-skill
pip install -r requirements.txt
```
## 📊 Sample Dataset Highlights
The included demo CSV contains **15 months of P&L data** with:
- 3 product lines (SaaS, Enterprise, Services)
- 25 financial metrics including revenue, expenses, margins, CAC, LTV
- Quarterly trends showing business growth
- Perfect for showcasing time-series analysis, correlations, and financial insights
## 🎨 Example Use Cases
- **📊 Sales Data** → Revenue trends, product performance, regional analysis
- **👥 Customer Data** → Demographics, segmentation, geographic patterns
- **💰 Financial Data** → Transaction analysis, trend detection, correlations
- **⚙️ Operational Data** → Performance metrics, time-series analysis
- **📋 Survey Data** → Response distributions, cross-tabulations
## 🛠️ Technical Details
**Dependencies:**
- Python 3.8+
- pandas 2.0+
- matplotlib 3.7+
- seaborn 0.12+
**Visualizations Generated:**
- Time-series trend plots
- Correlation heatmaps
- Distribution histograms
- Categorical bar charts
## 📝 Example Output
```
============================================================
📊 DATA OVERVIEW
============================================================
Rows: 100 | Columns: 15
📋 DATA TYPES:
• order_date: object
• total_revenue: float64
• customer_segment: object
...
🔍 DATA QUALITY:
✓ No missing values - dataset is complete!
📈 NUMERICAL ANALYSIS:
[Summary statistics for all numeric columns]
🔗 CORRELATIONS:
[Correlation matrix showing relationships]
📅 TIME SERIES ANALYSIS:
Date range: 2024-01-05 to 2024-04-11
Span: 97 days
📊 VISUALIZATIONS CREATED:
✓ correlation_heatmap.png
✓ time_series_analysis.png
✓ distributions.png
✓ categorical_distributions.png
```
## 🌟 Connect & Learn More
<div align="center">
[![Join AI Community](https://img.shields.io/badge/Join-AI%20Community%20(FREE)-blue?style=for-the-badge&logo=)](https://www.skool.com/ai-for-your-business/about)
[![Link Tree](https://img.shields.io/badge/Linktree-Everything-green?style=for-the-badge&logo=linktree&logoColor=white)](https://linktr.ee/corbin_brown)
[![YouTube Membership](https://img.shields.io/badge/YouTube-Become%20a%20Builder-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/channel/UCJFMlSxcvlZg5yZUYJT0Pug/join)
[![Twitter Follow](https://img.shields.io/badge/Twitter-Follow%20@corbin__braun-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://twitter.com/corbin_braun)
</div>
## 🤝 Contributing
Contributions are welcome! Feel free to:
- Report bugs
- Suggest new features
- Submit pull requests
- Share your use cases
## 📄 License
MIT License - feel free to use this skill for personal or commercial projects!
## 🙏 Acknowledgments
Built for the Claude Skills platform by [Anthropic](https://www.anthropic.com/news/skills).
---
<div align="center">
**Made with ❤️ for the AI community**
⭐ Star this repo if you find it useful!
</div>

View File

@@ -0,0 +1,148 @@
---
name: csv-data-summarizer
description: CSV数据分析技能。使用Python和pandas分析CSV文件生成统计摘要和快速可视化图表。当用户上传或提到CSV文件、需要分析表格数据时自动使用。
metadata:
version: "2.1.0"
dependencies: python>=3.8, pandas>=2.0.0, matplotlib>=3.7.0, seaborn>=0.12.0
---
# CSV 数据分析器
此技能分析 CSV 文件并提供包含统计洞察和可视化的全面摘要。
## 何时使用此技能
当用户:
- 上传或提到 CSV 文件
- 要求汇总、分析或可视化表格数据
- 请求从 CSV 数据中获取洞察
- 想了解数据结构和质量
## 工作原理
## ⚠️ 关键行为要求 ⚠️
**不要问用户想用数据做什么。**
**不要提供选项或选择。**
**不要说"您想让我帮您做什么?"**
**不要列出可能的分析选项。**
**立即自动执行:**
1. 运行全面分析
2. 生成所有相关可视化
3. 展示完整结果
4. 不提问、不给选项、不等待用户输入
**用户想要立即获得完整分析 - 直接做就行。**
### 自动分析步骤:
**该技能通过先检查数据,然后确定最相关的分析,智能适应不同的数据类型和行业。**
1. **加载并检查** CSV 文件到 pandas DataFrame
2. **识别数据结构** - 列类型、日期列、数值列、类别
3. **根据数据内容确定相关分析**
- **销售/电商数据**(订单日期、收入、产品):时间序列趋势、收入分析、产品表现
- **客户数据**(人口统计、细分、区域):分布分析、细分、地理模式
- **财务数据**(交易、金额、日期):趋势分析、统计摘要、相关性
- **运营数据**(时间戳、指标、状态):时间序列、绩效指标、分布
- **调查数据**(分类响应、评分):频率分析、交叉表、分布
- **通用表格数据**:根据找到的列类型调整
4. **只创建对特定数据集有意义的可视化**
- 时间序列图仅在存在日期/时间戳列时
- 相关性热图仅在存在多个数值列时
- 类别分布仅在存在分类列时
- 数值分布的直方图(相关时)
5. **自动生成全面输出**包括:
- 数据概览(行数、列数、类型)
- 与数据类型相关的关键统计和指标
- 缺失数据分析
- 多个相关可视化(仅适用的那些)
- 基于此特定数据集中发现的模式的可操作洞察
6. **一次性展示所有内容** - 不追问
**适应示例:**
- 带患者ID的医疗数据 → 专注于人口统计、治疗模式、时间趋势
- 带库存水平的库存数据 → 专注于数量分布、补货模式、SKU分析
- 带时间戳的网站分析 → 专注于流量模式、转化指标、时段分析
- 调查响应 → 专注于响应分布、人口统计细分、情感模式
### 行为指南
**正确方法 - 这样说:**
- "我现在对这些数据进行全面分析。"
- "这是带可视化的完整分析:"
- "我识别出这是[类型]数据并生成了相关洞察:"
- 然后立即展示完整分析
**要做:**
- 立即运行分析脚本
- 自动生成所有相关图表
- 无需询问即提供完整洞察
- 在第一次响应中就做到全面完整
- 果断行动,不需征求许可
**永远不要说这些话:**
- "您想用这些数据做什么?"
- "您想让我帮您做什么?"
- "这里有一些常见选项:"
- "让我知道您想要什么帮助"
- "如果您愿意,我可以创建全面分析!"
- 任何以""结尾询问用户方向的句子
- 任何选项或选择列表
- 任何条件性的"如果您想我可以做X"
**禁止行为:**
- 询问用户想要什么
- 列出选项供用户选择
- 在分析前等待用户指示
- 提供需要后续跟进的部分分析
- 描述你可以做什么而不是直接做
### 使用方法
该技能提供 Python 函数 `summarize_csv(file_path)`
- 接受 CSV 文件的路径
- 返回带统计信息的全面文本摘要
- 根据数据结构自动生成多个可视化
### 示例提示
> "这是 `sales_data.csv`。你能汇总这个文件吗?"
> "分析这个客户数据 CSV 并展示趋势。"
> "你能从 `orders.csv` 中发现什么洞察?"
### 示例输出
**数据集概览**
- 5,000 行 × 8 列
- 3 个数值列1 个日期列
**统计摘要**
- 平均订单价值:$58.2
- 标准差:$12.4
- 缺失值2%100个单元格
**洞察**
- 销售随时间呈上升趋势
- Q4活动达到峰值
*(附:趋势图)*
## 文件
- `analyze.py` - 核心分析逻辑
- `requirements.txt` - Python 依赖
- `resources/sample.csv` - 用于测试的示例数据集
- `resources/README.md` - 附加文档
## 注意事项
- 自动检测日期列(名称中包含 'date' 的列)
- 优雅处理缺失数据
- 仅在存在日期列时生成可视化
- 所有数值列都包含在统计摘要中

View File

@@ -0,0 +1,182 @@
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
def summarize_csv(file_path):
"""
Comprehensively analyzes a CSV file and generates multiple visualizations.
Args:
file_path (str): Path to the CSV file
Returns:
str: Formatted comprehensive analysis of the dataset
"""
df = pd.read_csv(file_path)
summary = []
charts_created = []
# Basic info
summary.append("=" * 60)
summary.append("📊 DATA OVERVIEW")
summary.append("=" * 60)
summary.append(f"Rows: {df.shape[0]:,} | Columns: {df.shape[1]}")
summary.append(f"\nColumns: {', '.join(df.columns.tolist())}")
# Data types
summary.append(f"\n📋 DATA TYPES:")
for col, dtype in df.dtypes.items():
summary.append(f"{col}: {dtype}")
# Missing data analysis
missing = df.isnull().sum().sum()
missing_pct = (missing / (df.shape[0] * df.shape[1])) * 100
summary.append(f"\n🔍 DATA QUALITY:")
if missing:
summary.append(f"Missing values: {missing:,} ({missing_pct:.2f}% of total data)")
summary.append("Missing by column:")
for col in df.columns:
col_missing = df[col].isnull().sum()
if col_missing > 0:
col_pct = (col_missing / len(df)) * 100
summary.append(f"{col}: {col_missing:,} ({col_pct:.1f}%)")
else:
summary.append("✓ No missing values - dataset is complete!")
# Numeric analysis
numeric_cols = df.select_dtypes(include='number').columns.tolist()
if numeric_cols:
summary.append(f"\n📈 NUMERICAL ANALYSIS:")
summary.append(str(df[numeric_cols].describe()))
# Correlations if multiple numeric columns
if len(numeric_cols) > 1:
summary.append(f"\n🔗 CORRELATIONS:")
corr_matrix = df[numeric_cols].corr()
summary.append(str(corr_matrix))
# Create correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0,
square=True, linewidths=1)
plt.title('Correlation Heatmap')
plt.tight_layout()
plt.savefig('correlation_heatmap.png', dpi=150)
plt.close()
charts_created.append('correlation_heatmap.png')
# Categorical analysis
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
categorical_cols = [c for c in categorical_cols if 'id' not in c.lower()]
if categorical_cols:
summary.append(f"\n📊 CATEGORICAL ANALYSIS:")
for col in categorical_cols[:5]: # Limit to first 5
value_counts = df[col].value_counts()
summary.append(f"\n{col}:")
for val, count in value_counts.head(10).items():
pct = (count / len(df)) * 100
summary.append(f"{val}: {count:,} ({pct:.1f}%)")
# Time series analysis
date_cols = [c for c in df.columns if 'date' in c.lower() or 'time' in c.lower()]
if date_cols:
summary.append(f"\n📅 TIME SERIES ANALYSIS:")
date_col = date_cols[0]
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
date_range = df[date_col].max() - df[date_col].min()
summary.append(f"Date range: {df[date_col].min()} to {df[date_col].max()}")
summary.append(f"Span: {date_range.days} days")
# Create time-series plots for numeric columns
if numeric_cols:
fig, axes = plt.subplots(min(3, len(numeric_cols)), 1,
figsize=(12, 4 * min(3, len(numeric_cols))))
if len(numeric_cols) == 1:
axes = [axes]
for idx, num_col in enumerate(numeric_cols[:3]):
ax = axes[idx] if len(numeric_cols) > 1 else axes[0]
daily_data = df.groupby(date_col)[num_col].agg(['mean', 'sum', 'count'])
daily_data['mean'].plot(ax=ax, label='Average', linewidth=2)
ax.set_title(f'{num_col} Over Time')
ax.set_xlabel('Date')
ax.set_ylabel(num_col)
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('time_series_analysis.png', dpi=150)
plt.close()
charts_created.append('time_series_analysis.png')
# Distribution plots for numeric columns
if numeric_cols:
n_cols = min(4, len(numeric_cols))
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes = axes.flatten()
for idx, col in enumerate(numeric_cols[:4]):
axes[idx].hist(df[col].dropna(), bins=30, edgecolor='black', alpha=0.7)
axes[idx].set_title(f'Distribution of {col}')
axes[idx].set_xlabel(col)
axes[idx].set_ylabel('Frequency')
axes[idx].grid(True, alpha=0.3)
# Hide unused subplots
for idx in range(len(numeric_cols[:4]), 4):
axes[idx].set_visible(False)
plt.tight_layout()
plt.savefig('distributions.png', dpi=150)
plt.close()
charts_created.append('distributions.png')
# Categorical distributions
if categorical_cols:
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
axes = axes.flatten()
for idx, col in enumerate(categorical_cols[:4]):
value_counts = df[col].value_counts().head(10)
axes[idx].barh(range(len(value_counts)), value_counts.values)
axes[idx].set_yticks(range(len(value_counts)))
axes[idx].set_yticklabels(value_counts.index)
axes[idx].set_title(f'Top Values in {col}')
axes[idx].set_xlabel('Count')
axes[idx].grid(True, alpha=0.3, axis='x')
# Hide unused subplots
for idx in range(len(categorical_cols[:4]), 4):
axes[idx].set_visible(False)
plt.tight_layout()
plt.savefig('categorical_distributions.png', dpi=150)
plt.close()
charts_created.append('categorical_distributions.png')
# Summary of visualizations
if charts_created:
summary.append(f"\n📊 VISUALIZATIONS CREATED:")
for chart in charts_created:
summary.append(f"{chart}")
summary.append("\n" + "=" * 60)
summary.append("✅ COMPREHENSIVE ANALYSIS COMPLETE")
summary.append("=" * 60)
return "\n".join(summary)
if __name__ == "__main__":
# Test with sample data
import sys
if len(sys.argv) > 1:
file_path = sys.argv[1]
else:
file_path = "resources/sample.csv"
print(summarize_csv(file_path))

View File

@@ -0,0 +1,46 @@
month,year,quarter,product_line,total_revenue,cost_of_goods_sold,gross_profit,gross_margin_pct,marketing_expense,sales_expense,rd_expense,admin_expense,total_operating_expenses,operating_income,operating_margin_pct,interest_expense,tax_expense,net_income,net_margin_pct,customer_acquisition_cost,customer_lifetime_value,units_sold,avg_selling_price,headcount,revenue_per_employee
Jan,2023,Q1,SaaS Platform,450000,135000,315000,70.0,65000,85000,45000,35000,230000,85000,18.9,5000,16000,64000,14.2,125,2400,1200,375,45,10000
Jan,2023,Q1,Enterprise Solutions,280000,112000,168000,60.0,35000,55000,25000,20000,135000,33000,11.8,3000,6600,23400,8.4,450,8500,450,622,45,6222
Jan,2023,Q1,Professional Services,125000,50000,75000,60.0,15000,22000,8000,12000,57000,18000,14.4,1500,3600,12900,10.3,200,3200,95,1316,45,2778
Feb,2023,Q1,SaaS Platform,475000,142500,332500,70.0,68000,89000,47000,36000,240000,92500,19.5,5200,18500,68800,14.5,120,2500,1300,365,47,10106
Feb,2023,Q1,Enterprise Solutions,295000,118000,177000,60.0,38000,58000,27000,22000,145000,32000,10.8,3200,6400,22400,7.6,440,8600,470,628,47,6277
Feb,2023,Q1,Professional Services,135000,54000,81000,60.0,16000,24000,9000,13000,62000,19000,14.1,1600,3800,13600,10.1,195,3300,105,1286,47,2872
Mar,2023,Q1,SaaS Platform,520000,156000,364000,70.0,75000,95000,52000,40000,262000,102000,19.6,5500,19250,77250,14.9,115,2650,1450,359,50,10400
Mar,2023,Q1,Enterprise Solutions,325000,130000,195000,60.0,42000,63000,30000,25000,160000,35000,10.8,3500,7000,24500,7.5,425,8800,520,625,50,6500
Mar,2023,Q1,Professional Services,148000,59200,88800,60.0,18000,26000,10000,14000,68000,20800,14.1,1800,4160,14840,10.0,190,3400,115,1287,50,2960
Apr,2023,Q2,SaaS Platform,555000,166500,388500,70.0,80000,100000,55000,42000,277000,111500,20.1,5800,22300,83400,15.0,110,2750,1550,358,52,10673
Apr,2023,Q2,Enterprise Solutions,340000,136000,204000,60.0,45000,65000,32000,26000,168000,36000,10.6,3700,7200,25100,7.4,420,9000,540,630,52,6538
Apr,2023,Q2,Professional Services,158000,63200,94800,60.0,19000,27000,11000,15000,72000,22800,14.4,1900,4560,16340,10.3,185,3500,125,1264,52,3038
May,2023,Q2,SaaS Platform,590000,177000,413000,70.0,85000,105000,58000,44000,292000,121000,20.5,6000,24200,90800,15.4,105,2850,1650,358,55,10727
May,2023,Q2,Enterprise Solutions,365000,146000,219000,60.0,48000,68000,35000,28000,179000,40000,11.0,4000,8000,28000,7.7,410,9200,580,629,55,6636
May,2023,Q2,Professional Services,172000,68800,103200,60.0,21000,29000,12000,16000,78000,25200,14.7,2100,5040,18060,10.5,180,3600,135,1274,55,3127
Jun,2023,Q2,SaaS Platform,625000,187500,437500,70.0,90000,110000,62000,46000,308000,129500,20.7,6200,25850,97450,15.6,100,2950,1750,357,58,10776
Jun,2023,Q2,Enterprise Solutions,385000,154000,231000,60.0,50000,70000,37000,29000,186000,45000,11.7,4200,9000,31800,8.3,400,9400,610,631,58,6638
Jun,2023,Q2,Professional Services,185000,74000,111000,60.0,22000,31000,13000,17000,83000,28000,15.1,2200,5580,20220,10.9,175,3700,145,1276,58,3190
Jul,2023,Q3,SaaS Platform,665000,199500,465500,70.0,95000,115000,65000,48000,323000,142500,21.4,6500,28500,107500,16.2,95,3050,1850,359,60,11083
Jul,2023,Q3,Enterprise Solutions,410000,164000,246000,60.0,53000,73000,40000,31000,197000,49000,12.0,4400,9800,34800,8.5,390,9600,650,631,60,6833
Jul,2023,Q3,Professional Services,198000,79200,118800,60.0,24000,33000,14000,18000,89000,29800,15.1,2400,5960,21440,10.8,170,3800,155,1277,60,3300
Aug,2023,Q3,SaaS Platform,705000,211500,493500,70.0,100000,120000,68000,50000,338000,155500,22.1,6800,31100,117600,16.7,90,3150,1950,362,63,11190
Aug,2023,Q3,Enterprise Solutions,435000,174000,261000,60.0,56000,76000,42000,33000,207000,54000,12.4,4600,10800,38600,8.9,380,9800,690,630,63,6905
Aug,2023,Q3,Professional Services,210000,84000,126000,60.0,25000,35000,15000,19000,94000,32000,15.2,2500,6400,23100,11.0,165,3900,165,1273,63,3333
Sep,2023,Q3,SaaS Platform,750000,225000,525000,70.0,108000,128000,72000,53000,361000,164000,21.9,7200,33360,123440,16.5,88,3250,2080,360,65,11538
Sep,2023,Q3,Enterprise Solutions,465000,186000,279000,60.0,60000,80000,45000,35000,220000,59000,12.7,5000,11800,42200,9.1,370,10000,735,633,65,7154
Sep,2023,Q3,Professional Services,225000,90000,135000,60.0,27000,37000,16000,20000,100000,35000,15.6,2700,6920,25380,11.3,160,4000,175,1286,65,3462
Oct,2023,Q4,SaaS Platform,795000,238500,556500,70.0,115000,135000,75000,55000,380000,176500,22.2,7500,35870,133130,16.7,85,3350,2200,361,68,11691
Oct,2023,Q4,Enterprise Solutions,490000,196000,294000,60.0,63000,83000,47000,36000,229000,65000,13.3,5200,13000,46800,9.6,360,10200,770,636,68,7206
Oct,2023,Q4,Professional Services,238000,95200,142800,60.0,29000,39000,17000,21000,106000,36800,15.5,2800,7360,26640,11.2,158,4100,185,1286,68,3500
Nov,2023,Q4,SaaS Platform,840000,252000,588000,70.0,122000,142000,78000,58000,400000,188000,22.4,7800,38440,141760,16.9,82,3450,2320,362,70,12000
Nov,2023,Q4,Enterprise Solutions,520000,208000,312000,60.0,67000,87000,50000,38000,242000,70000,13.5,5500,14100,50400,9.7,355,10400,815,638,70,7429
Nov,2023,Q4,Professional Services,252000,100800,151200,60.0,31000,41000,18000,22000,112000,39200,15.6,3000,7728,28472,11.3,155,4200,195,1292,70,3600
Dec,2023,Q4,SaaS Platform,895000,268500,626500,70.0,130000,150000,82000,62000,424000,202500,22.6,8200,41145,153155,17.1,80,3550,2480,361,72,12431
Dec,2023,Q4,Enterprise Solutions,555000,222000,333000,60.0,72000,92000,53000,40000,257000,76000,13.7,6000,15400,54600,9.8,350,10600,870,638,72,7708
Dec,2023,Q4,Professional Services,268000,107200,160800,60.0,33000,43000,19000,23000,118000,42800,16.0,3200,8352,31248,11.7,152,4300,205,1307,72,3722
Jan,2024,Q1,SaaS Platform,925000,277500,647500,70.0,135000,155000,85000,64000,439000,208500,22.5,8500,42070,157930,17.1,78,3650,2550,363,75,12333
Jan,2024,Q1,Enterprise Solutions,575000,230000,345000,60.0,75000,95000,55000,42000,267000,78000,13.6,6200,15760,56040,9.7,345,10800,900,639,75,7667
Jan,2024,Q1,Professional Services,280000,112000,168000,60.0,34000,45000,20000,24000,123000,45000,16.1,3300,8770,32930,11.8,150,4400,215,1302,75,3733
Feb,2024,Q1,SaaS Platform,965000,289500,675500,70.0,140000,160000,88000,66000,454000,221500,23.0,8800,44510,168190,17.4,75,3750,2660,363,77,12532
Feb,2024,Q1,Enterprise Solutions,600000,240000,360000,60.0,78000,98000,57000,43000,276000,84000,14.0,6400,16800,60800,10.1,340,11000,940,638,77,7792
Feb,2024,Q1,Professional Services,295000,118000,177000,60.0,36000,47000,21000,25000,129000,48000,16.3,3500,9420,35080,11.9,148,4500,225,1311,77,3831
Mar,2024,Q1,SaaS Platform,1020000,306000,714000,70.0,148000,168000,92000,69000,477000,237000,23.2,9200,47880,179920,17.6,73,3850,2810,363,80,12750
Mar,2024,Q1,Enterprise Solutions,635000,254000,381000,60.0,82000,103000,60000,45000,290000,91000,14.3,6800,18200,66000,10.4,335,11200,990,641,80,7938
Mar,2024,Q1,Professional Services,312000,124800,187200,60.0,38000,49000,22000,26000,135000,52200,16.7,3700,10230,38270,12.3,145,4600,240,1300,80,3900
1 month year quarter product_line total_revenue cost_of_goods_sold gross_profit gross_margin_pct marketing_expense sales_expense rd_expense admin_expense total_operating_expenses operating_income operating_margin_pct interest_expense tax_expense net_income net_margin_pct customer_acquisition_cost customer_lifetime_value units_sold avg_selling_price headcount revenue_per_employee
2 Jan 2023 Q1 SaaS Platform 450000 135000 315000 70.0 65000 85000 45000 35000 230000 85000 18.9 5000 16000 64000 14.2 125 2400 1200 375 45 10000
3 Jan 2023 Q1 Enterprise Solutions 280000 112000 168000 60.0 35000 55000 25000 20000 135000 33000 11.8 3000 6600 23400 8.4 450 8500 450 622 45 6222
4 Jan 2023 Q1 Professional Services 125000 50000 75000 60.0 15000 22000 8000 12000 57000 18000 14.4 1500 3600 12900 10.3 200 3200 95 1316 45 2778
5 Feb 2023 Q1 SaaS Platform 475000 142500 332500 70.0 68000 89000 47000 36000 240000 92500 19.5 5200 18500 68800 14.5 120 2500 1300 365 47 10106
6 Feb 2023 Q1 Enterprise Solutions 295000 118000 177000 60.0 38000 58000 27000 22000 145000 32000 10.8 3200 6400 22400 7.6 440 8600 470 628 47 6277
7 Feb 2023 Q1 Professional Services 135000 54000 81000 60.0 16000 24000 9000 13000 62000 19000 14.1 1600 3800 13600 10.1 195 3300 105 1286 47 2872
8 Mar 2023 Q1 SaaS Platform 520000 156000 364000 70.0 75000 95000 52000 40000 262000 102000 19.6 5500 19250 77250 14.9 115 2650 1450 359 50 10400
9 Mar 2023 Q1 Enterprise Solutions 325000 130000 195000 60.0 42000 63000 30000 25000 160000 35000 10.8 3500 7000 24500 7.5 425 8800 520 625 50 6500
10 Mar 2023 Q1 Professional Services 148000 59200 88800 60.0 18000 26000 10000 14000 68000 20800 14.1 1800 4160 14840 10.0 190 3400 115 1287 50 2960
11 Apr 2023 Q2 SaaS Platform 555000 166500 388500 70.0 80000 100000 55000 42000 277000 111500 20.1 5800 22300 83400 15.0 110 2750 1550 358 52 10673
12 Apr 2023 Q2 Enterprise Solutions 340000 136000 204000 60.0 45000 65000 32000 26000 168000 36000 10.6 3700 7200 25100 7.4 420 9000 540 630 52 6538
13 Apr 2023 Q2 Professional Services 158000 63200 94800 60.0 19000 27000 11000 15000 72000 22800 14.4 1900 4560 16340 10.3 185 3500 125 1264 52 3038
14 May 2023 Q2 SaaS Platform 590000 177000 413000 70.0 85000 105000 58000 44000 292000 121000 20.5 6000 24200 90800 15.4 105 2850 1650 358 55 10727
15 May 2023 Q2 Enterprise Solutions 365000 146000 219000 60.0 48000 68000 35000 28000 179000 40000 11.0 4000 8000 28000 7.7 410 9200 580 629 55 6636
16 May 2023 Q2 Professional Services 172000 68800 103200 60.0 21000 29000 12000 16000 78000 25200 14.7 2100 5040 18060 10.5 180 3600 135 1274 55 3127
17 Jun 2023 Q2 SaaS Platform 625000 187500 437500 70.0 90000 110000 62000 46000 308000 129500 20.7 6200 25850 97450 15.6 100 2950 1750 357 58 10776
18 Jun 2023 Q2 Enterprise Solutions 385000 154000 231000 60.0 50000 70000 37000 29000 186000 45000 11.7 4200 9000 31800 8.3 400 9400 610 631 58 6638
19 Jun 2023 Q2 Professional Services 185000 74000 111000 60.0 22000 31000 13000 17000 83000 28000 15.1 2200 5580 20220 10.9 175 3700 145 1276 58 3190
20 Jul 2023 Q3 SaaS Platform 665000 199500 465500 70.0 95000 115000 65000 48000 323000 142500 21.4 6500 28500 107500 16.2 95 3050 1850 359 60 11083
21 Jul 2023 Q3 Enterprise Solutions 410000 164000 246000 60.0 53000 73000 40000 31000 197000 49000 12.0 4400 9800 34800 8.5 390 9600 650 631 60 6833
22 Jul 2023 Q3 Professional Services 198000 79200 118800 60.0 24000 33000 14000 18000 89000 29800 15.1 2400 5960 21440 10.8 170 3800 155 1277 60 3300
23 Aug 2023 Q3 SaaS Platform 705000 211500 493500 70.0 100000 120000 68000 50000 338000 155500 22.1 6800 31100 117600 16.7 90 3150 1950 362 63 11190
24 Aug 2023 Q3 Enterprise Solutions 435000 174000 261000 60.0 56000 76000 42000 33000 207000 54000 12.4 4600 10800 38600 8.9 380 9800 690 630 63 6905
25 Aug 2023 Q3 Professional Services 210000 84000 126000 60.0 25000 35000 15000 19000 94000 32000 15.2 2500 6400 23100 11.0 165 3900 165 1273 63 3333
26 Sep 2023 Q3 SaaS Platform 750000 225000 525000 70.0 108000 128000 72000 53000 361000 164000 21.9 7200 33360 123440 16.5 88 3250 2080 360 65 11538
27 Sep 2023 Q3 Enterprise Solutions 465000 186000 279000 60.0 60000 80000 45000 35000 220000 59000 12.7 5000 11800 42200 9.1 370 10000 735 633 65 7154
28 Sep 2023 Q3 Professional Services 225000 90000 135000 60.0 27000 37000 16000 20000 100000 35000 15.6 2700 6920 25380 11.3 160 4000 175 1286 65 3462
29 Oct 2023 Q4 SaaS Platform 795000 238500 556500 70.0 115000 135000 75000 55000 380000 176500 22.2 7500 35870 133130 16.7 85 3350 2200 361 68 11691
30 Oct 2023 Q4 Enterprise Solutions 490000 196000 294000 60.0 63000 83000 47000 36000 229000 65000 13.3 5200 13000 46800 9.6 360 10200 770 636 68 7206
31 Oct 2023 Q4 Professional Services 238000 95200 142800 60.0 29000 39000 17000 21000 106000 36800 15.5 2800 7360 26640 11.2 158 4100 185 1286 68 3500
32 Nov 2023 Q4 SaaS Platform 840000 252000 588000 70.0 122000 142000 78000 58000 400000 188000 22.4 7800 38440 141760 16.9 82 3450 2320 362 70 12000
33 Nov 2023 Q4 Enterprise Solutions 520000 208000 312000 60.0 67000 87000 50000 38000 242000 70000 13.5 5500 14100 50400 9.7 355 10400 815 638 70 7429
34 Nov 2023 Q4 Professional Services 252000 100800 151200 60.0 31000 41000 18000 22000 112000 39200 15.6 3000 7728 28472 11.3 155 4200 195 1292 70 3600
35 Dec 2023 Q4 SaaS Platform 895000 268500 626500 70.0 130000 150000 82000 62000 424000 202500 22.6 8200 41145 153155 17.1 80 3550 2480 361 72 12431
36 Dec 2023 Q4 Enterprise Solutions 555000 222000 333000 60.0 72000 92000 53000 40000 257000 76000 13.7 6000 15400 54600 9.8 350 10600 870 638 72 7708
37 Dec 2023 Q4 Professional Services 268000 107200 160800 60.0 33000 43000 19000 23000 118000 42800 16.0 3200 8352 31248 11.7 152 4300 205 1307 72 3722
38 Jan 2024 Q1 SaaS Platform 925000 277500 647500 70.0 135000 155000 85000 64000 439000 208500 22.5 8500 42070 157930 17.1 78 3650 2550 363 75 12333
39 Jan 2024 Q1 Enterprise Solutions 575000 230000 345000 60.0 75000 95000 55000 42000 267000 78000 13.6 6200 15760 56040 9.7 345 10800 900 639 75 7667
40 Jan 2024 Q1 Professional Services 280000 112000 168000 60.0 34000 45000 20000 24000 123000 45000 16.1 3300 8770 32930 11.8 150 4400 215 1302 75 3733
41 Feb 2024 Q1 SaaS Platform 965000 289500 675500 70.0 140000 160000 88000 66000 454000 221500 23.0 8800 44510 168190 17.4 75 3750 2660 363 77 12532
42 Feb 2024 Q1 Enterprise Solutions 600000 240000 360000 60.0 78000 98000 57000 43000 276000 84000 14.0 6400 16800 60800 10.1 340 11000 940 638 77 7792
43 Feb 2024 Q1 Professional Services 295000 118000 177000 60.0 36000 47000 21000 25000 129000 48000 16.3 3500 9420 35080 11.9 148 4500 225 1311 77 3831
44 Mar 2024 Q1 SaaS Platform 1020000 306000 714000 70.0 148000 168000 92000 69000 477000 237000 23.2 9200 47880 179920 17.6 73 3850 2810 363 80 12750
45 Mar 2024 Q1 Enterprise Solutions 635000 254000 381000 60.0 82000 103000 60000 45000 290000 91000 14.3 6800 18200 66000 10.4 335 11200 990 641 80 7938
46 Mar 2024 Q1 Professional Services 312000 124800 187200 60.0 38000 49000 22000 26000 135000 52200 16.7 3700 10230 38270 12.3 145 4600 240 1300 80 3900

View File

@@ -0,0 +1,4 @@
pandas>=2.0.0
matplotlib>=3.7.0
seaborn>=0.12.0

View File

@@ -0,0 +1,83 @@
# CSV Data Summarizer - Resources
---
## 🌟 Connect & Learn More
<div align="center">
### 🚀 **Join Our Community**
[![Join AI Community](https://img.shields.io/badge/Join-AI%20Community%20(FREE)-blue?style=for-the-badge&logo=)](https://www.skool.com/ai-for-your-business/about)
### 🔗 **All My Links**
[![Link Tree](https://img.shields.io/badge/Linktree-Everything-green?style=for-the-badge&logo=linktree&logoColor=white)](https://linktr.ee/corbin_brown)
### 🛠️ **Become a Builder**
[![YouTube Membership](https://img.shields.io/badge/YouTube-Become%20a%20Builder-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/channel/UCJFMlSxcvlZg5yZUYJT0Pug/join)
### 🐦 **Follow on Twitter**
[![Twitter Follow](https://img.shields.io/badge/Twitter-Follow%20@corbin__braun-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://twitter.com/corbin_braun)
</div>
---
## Sample Data
The `sample.csv` file contains example sales data with the following columns:
- **date**: Transaction date
- **product**: Product name (Widget A, B, or C)
- **quantity**: Number of items sold
- **revenue**: Total revenue from the transaction
- **customer_id**: Unique customer identifier
- **region**: Geographic region (North, South, East, West)
## Usage Examples
### Basic Summary
```
Analyze sample.csv
```
### With Custom CSV
```
Here's my sales_data.csv file. Can you summarize it?
```
### Focus on Specific Insights
```
What are the revenue trends in this dataset?
```
## Testing the Skill
You can test the skill locally before uploading to Claude:
```bash
# Install dependencies
pip install -r ../requirements.txt
# Run the analysis
python ../analyze.py sample.csv
```
## Expected Output
The analysis will provide:
1. **Dataset dimensions** - Row and column counts
2. **Column information** - Names and data types
3. **Summary statistics** - Mean, median, std dev, min/max for numeric columns
4. **Data quality** - Missing value detection and counts
5. **Visualizations** - Time-series plots when date columns are present
## Customization
To adapt this skill for your specific use case:
1. Modify `analyze.py` to include domain-specific calculations
2. Add custom visualization types in the plotting section
3. Include validation rules specific to your data
4. Add more sample datasets to test different scenarios

View File

@@ -0,0 +1,22 @@
date,product,quantity,revenue,customer_id,region
2024-01-15,Widget A,5,129.99,C001,North
2024-01-16,Widget B,3,89.97,C002,South
2024-01-17,Widget A,7,181.98,C003,East
2024-01-18,Widget C,2,199.98,C001,North
2024-01-19,Widget B,4,119.96,C004,West
2024-01-20,Widget A,6,155.94,C005,South
2024-01-21,Widget C,1,99.99,C002,South
2024-01-22,Widget B,8,239.92,C006,East
2024-01-23,Widget A,3,77.97,C007,North
2024-01-24,Widget C,5,499.95,C003,East
2024-01-25,Widget B,2,59.98,C008,West
2024-01-26,Widget A,9,233.91,C004,West
2024-01-27,Widget C,3,299.97,C009,North
2024-01-28,Widget B,6,179.94,C010,South
2024-01-29,Widget A,4,103.96,C005,South
2024-01-30,Widget C,7,699.93,C011,East
2024-01-31,Widget B,5,149.95,C012,West
2024-02-01,Widget A,8,207.92,C013,North
2024-02-02,Widget C,2,199.98,C014,South
2024-02-03,Widget B,10,299.90,C015,East
1 date product quantity revenue customer_id region
2 2024-01-15 Widget A 5 129.99 C001 North
3 2024-01-16 Widget B 3 89.97 C002 South
4 2024-01-17 Widget A 7 181.98 C003 East
5 2024-01-18 Widget C 2 199.98 C001 North
6 2024-01-19 Widget B 4 119.96 C004 West
7 2024-01-20 Widget A 6 155.94 C005 South
8 2024-01-21 Widget C 1 99.99 C002 South
9 2024-01-22 Widget B 8 239.92 C006 East
10 2024-01-23 Widget A 3 77.97 C007 North
11 2024-01-24 Widget C 5 499.95 C003 East
12 2024-01-25 Widget B 2 59.98 C008 West
13 2024-01-26 Widget A 9 233.91 C004 West
14 2024-01-27 Widget C 3 299.97 C009 North
15 2024-01-28 Widget B 6 179.94 C010 South
16 2024-01-29 Widget A 4 103.96 C005 South
17 2024-01-30 Widget C 7 699.93 C011 East
18 2024-01-31 Widget B 5 149.95 C012 West
19 2024-02-01 Widget A 8 207.92 C013 North
20 2024-02-02 Widget C 2 199.98 C014 South
21 2024-02-03 Widget B 10 299.90 C015 East